

RC-WuTRx-XXX

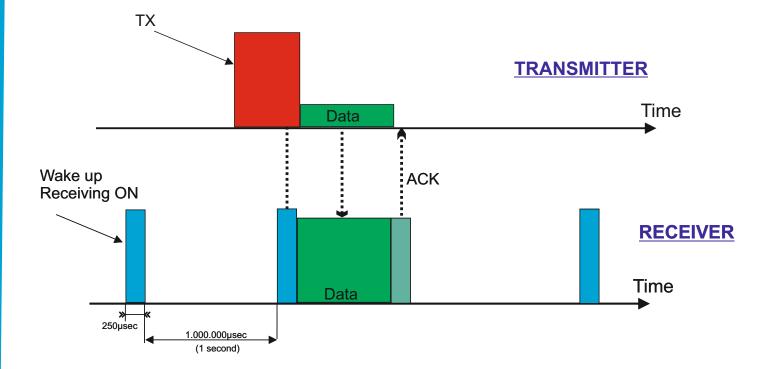
Ultra-Low Power WakeUp Transceiver Module

Ultra Low Power WakeUp Transceiver allows to optimaze the power consumption for IoT application.

It is a transceiver module that uses «wake up receiver tecnique» to be used in very low consumption applications. The WakeUp-Receiver continuously monitors the wireless channel (without the use of a microcontroller) and recognizes if there are any radio signals addressed to him, in this case it returns the data received on the serial interface.

The device wakes up every 1000ms (this time is programmable) for a time of 250µsec. In these conditions the average of the consumption is 120µA with a Sensibility of -110dBm.

The device RC-WuTRx-XXX is based on the CC1310 device from Texas Instruments, and it is available at three frequencies: 433MHz - 868MHz and 915MHz.

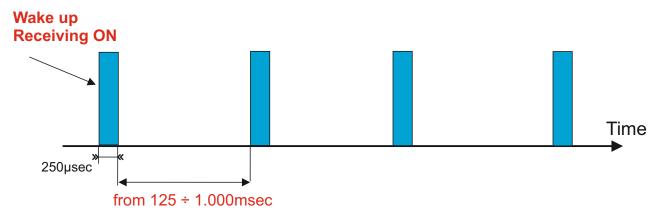

Module Information : Frequency

RC-WuTRx- - XXX 434=434MHz
868=868MHz
915=915MHz

The functionalities of this device are the following:

- Wireless Switch the 4 outputs of the module A correspond to the 4 inputs of module B and the other way around.
- Wireless Actuator by serial port you can control 4 Output in monostable and bistable mode.
- Radio Modem have the functions of a complete radio modem and simply require CMOS/TTL data at the transmit input and the corresponding transceiver(s) output the same data.

 Preamble and CRC are automatically generated and added to the RF transmission.



The device can work in two modality:

EP Mode	EU Mode
Average Consumption 1.2mA	Average Consumption 120.0µA
RX Sensibility -110dBm	RX Sensibility -110dBm
Bi-directional Capability : ACTIVE	Bi-directional Capability: TO ACTIVATE

In the modality EP (Low Consumption) the average of the consumption is around 1.2mA instead in modality EU (Ultra Low Consumption) the average consumption is 10 times lower 120,0µA. The device wakes up every 1000ms (this time is programmable) for a time of 250µsec. It recognizes if there are any radio signals addressed to him, in this case it analizes tha data received and decides which action to take (actuation, configuration, return data on the serial interface).

It is possible to set the wake up time from 125ms to 1000ms (default), the analysis time is always equal to 250µsec.

1.0 Device Resources

CTR

In operating mode EU (Low consumption) allows you to enable the sending of commands to the corresponding module.

- DIGITAL SWITCH (K1,K2,K3,K4)

it is 4 digital inputs, by default at 1.

In the functionality denominated "Wireless Switch", when this input is put at GND, the digital outuput of the corrispo

this input is put at GND, the digital outuput of the corrisponding module will be activated (K1-RL1, K2-RL2, K3-RL3, K4-RL4).

DIGITAL OUTPUT (RL1,RL2,RL3,RL4)

These are 4 digital outputs, by default at 0.

In the functionality called "Wireless Switch" these outputs go to 1 when the Digital Switch of the module corresponding has been activated (K1-RL1, K2-RL2, K3-RL3, K4-RL4).

In the function called "Wireless Actuator» these outputs can be driven by the module corresponding by means of simple commands on the serial interface.

DIGITAL INPUT (S1,S2,S3,S4)

These are 4 digital inputs, by default at 1.

In the function called "Wireless Actuator" the status of these digital inputs can be read by the corresponding module by sending simple commands on serial interface.

- SERIAL PORT (TX/RX)

The serial port is used to configure the device.

In the "Wireless Actuator" functionality to send commands or queries to the remote device.

In the "radio modem" functionality to send messages to the device remote.

2.0 EP Mode Functionality (Consumption = 1.2mA)

(EP Mode)
Consumption 1.2mA
Bidirectional

In this operating mode the average consumption is equal to about 1.2mA;

Wireless Switch Functionality

Using the digital switches $K1 \div K4$ of Device A (B), it will be possible to activate / deactivate the corresponding digital outputs $RL1 \div RL4$ of Device B (A) and vice versa.

Each time a command is made, an ACK is sent to the transmitter device. Bidirectionality Active.

Wireless Actuator Functionality

By sending simple commands on the serial interface of Device A (B) it is possible to activate / deactivate the digital outputs $RL1 \div RL4$ of Device B (A) and vice versa.

By sending simple commands on the serial interface of Device A (B) it is possible to check the status of the digital inputs S1 \div S4 B (A) and vice versa.

Each time a command is performed, an ACK is transmitted to the transmitter device on the serial interface "character da".

Bidirectionality Active

Radio Modem Functionality

With this function a Rs232 wireless link is realized, preamble and CRC are automatically generated and added to the RF transmission. The Device configured in EP Mode, immediately transmits the data presented on the serial interface.

Bidirectionality Active.

Remote Address = 01010101 Local Address = 02020202

Remote Address = 02020202 Local Address = 01010101

Note:

The digital outputs RL1 ÷ RL4 can be configured in bistable or monostable mode. In EP Mode, the TX ENABLE input is not used.

3.0 EU Mode Functionality (Consumption about 120µA)

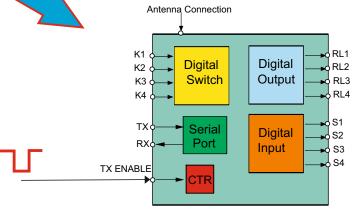
Wireless Switch Functionality

Using the digital switches $\overline{K1 \div K4}$ of Device A, it will be possible to activate / deactivate the corresponding digital outputs RL1 ÷ RL4 of Device B.

Wireless Actuator Functionality

By sending simple commands on the serial interface of Device A it is possible to activate / deactivate the digital outputs RL1 ÷ RL4 of Device B.

Radio Modem Functionality

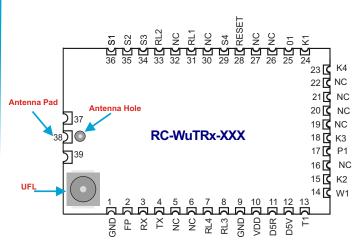

By transmitting data on Device A, they will be present on Device B.

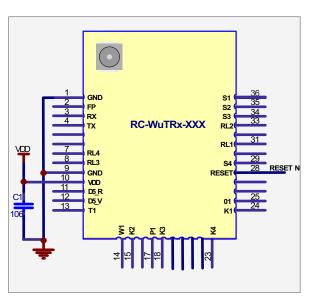
The Device A is configured in EP Mode (consumption 1.2mA) instead Device B is configured in EU Mode (consumption approximately 120.0µA). (EU Mode) Consumption 120.0µA Antenna Connection Antenna Connection Receiver K1 RI 1 K1 RI 1 Unidirectional Digital Digital Digital Digital RL2 K2 RL2 K2 Switch Output Switch Output K3 RL3 K3 RL3 RI 4 RI 4 K4 K4 S1 S1 ΤX TΧ Serial Serial **Digital** Digital S2 S2 Port Port RX RX Input S3 Input S3 S4 S4 TX ENABLE TX ENABLE Device B (EU Mode) Device A (EP Mode) Remote Address = 01010101 Bidirectional Remote Address = 02020202 Local Address = 02020202 Local Address = 01010101

Note:

It is possible to use this device in two ways:

- As a simple ultra-low receiver module consumption (120μA) without any bidirectionality. (example DEVICE A -----> DEVICE B).
- Use this module with an externale microcontroller to send a TX enable before the command.
 (example DEVICE A <----> DEVICE C).




Device C (EU Mode)

Remote Address = 02020202 Local Address = 01010101

4.0 Connection

Reference Schematics

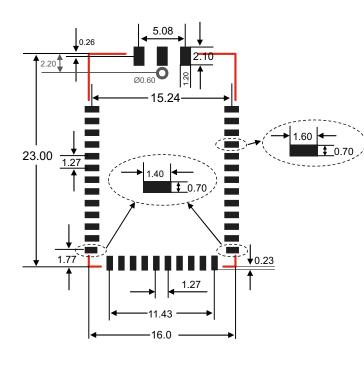
Pin Descriptions	s		
Pin Number	Name	I/O	Description
1,9,37,39	GND	-	Ground
5,6,16,19,20 21,22,26,27,30 32	NC	-	No electrical connection
02	FP(*)	ı	Flash Memory Protection. Low = Write the data configuration in flash memor High = Flash memory write protected.
03	RX	0	UART RX
04	TX	1	UART TX
07	RL4	0	Output RL4
08	RL3	0	Output RL3
10	VDD		Supply Voltage
11	D5R		Output Led Red Signalling
12	D5V	0	Output Led Green Signalling
13	T1	1	Switch to generate the carrier
14	W1	1	TX Enable
15	K2	1	Switch for RL2
17	P1	1	Switch for Test Mode
18	K3	1	Switch for RL3
23	K4	1	Switch for RL4
24	K1	1	Switch for RL1
25	01	1	Led test Mode
28	RESET	1	Reset (Active low, no internal pullup)
29	S4	I	Input S4
31	RL1	0	Output RL1
33	RL2	0	Output RL2
34	S3	1	Input S3
35	S2	1	Input S2
36	S1	1	Input S1
38	ANT	—	Antenna Connection

 $(\mbox{\ensuremath{^{\star}}})$ this functionality is active after an HW RESET

Note:

FP must be always at (1) HIGH = flash memory protect.

Set FP to (0) LOW only for the time necessary to modify the radio parameters, then bring FP back to (1) HIGH.


5.0 Electrical Specifications

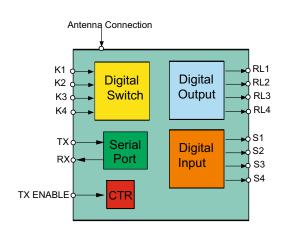
Ultra-Low Power WakeUp Receiver Module					
Parameter	Symbol	Min.	Тур.	Max.	Units
Operating Voltage	V _{cc}	1.8	3.00	3.6	VDC
Supply Current RX Mode	I _{CRX}		5.50		mA
Supply Current TX Mode +10dBm	I _{CTX1}		13.40		mA
Supply Current TX Mode +14dBm	I _{CTX2}		23.50		mA
Supply Current Averange WaKe Up Time = 1000ms EU Mode	I _{CTXAV}			130.00	μA
Supply Current Averange WaKe Up Time = 1000ms EP Mode	I _{CTXAV1}			1.30	mA
Operative Frequency (*)	F _{of}	430.00 865.00 912.00		435.00 870.00 917.00	MHz
Frequency Error	F		±10		ppm
RF Power Output 50ohm (*)	P _{oo}	0.0		+14.0	dBm
RF Sensibility 50kbps	S _d		-110.0		dBm
Data Rate	D _{cc}			4.0	Mbit/s
Operative Temperature	T ₁	-30.0		+75.0	°C

6.0 Mechanical Dimension

1.27mm 15mm 22mm

Recommended PCB Layout

7.0 Operating Mode

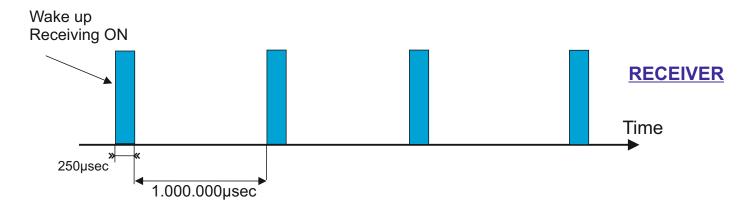

The functionalities of the device RC-WuTRx-XXX are the following :

- Wireless Switch

It is a 4 channels wireless switch module with pairing function, it provides 4 channels signal input and 4 channels control output (bistable and monostable mode).

- Wireless Actuator

It is a 4 channels for home automation, it is possible use 1 unit as Transmitter (controllable via Rs232 serial interface) and by one or more RX units, with the possibility to switch 4 channels in bistable/monostable mode.



- Radio Modem

The way of use of the modem is very simple and provides a wireless RS232 link with a RF data rate up to 50 kbps. The module has the functions of a complete radio modem and simply requires CMOS/TTL data at the transmit input and the corresponding transceiver(s) output the same data. Preamble and CRC are automatically generated and added to the RF transmission.

- Low Consumption characteristics

The device wakes up every 1000ms (this time is programmable) for a time of 250µsec. It recognizes if there are any radio signals addressed to him, in this case it analizes tha data received and decides which action to take (actuation, configuration, return data on the serial interface).

The module can work in two modalities:

1) Low Consumption Mode (EP)

In this modality the averange of the consumption is around 1.2mA; On each received data, an feedback ACK is immediately transmitted to the sender.

2) Ultra Low Consumption Mode (EU)

In this modality the averange of the consumption is around 120µA, and there is not automatic feedback to the sender but the Transmission must be enabled from a microcontroller.

7.1 Wireless Switch

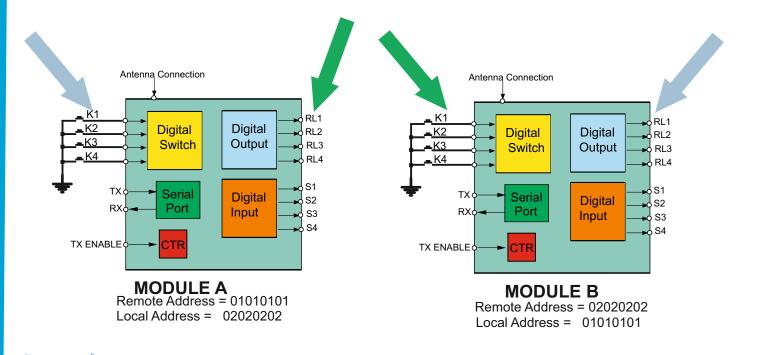
It is a 4 channels wireless switch module with pairing function, it provides maximum 4 channels signal input and maximum 4 channels control output (bistable and monostable).

About the configuration you can see par. **7.0**, **Local address** and **Remote Address** must be set up appropriately.

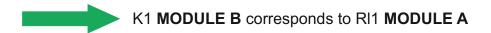
EP Mode.

The transmission of the K1 ÷ K4 command is immediately active, the command is immediately sent to the remote unit.

EU Mode


Before sending an actuation command K1 ÷ K4 it is necessary to enable the TX ENABLE (K5).

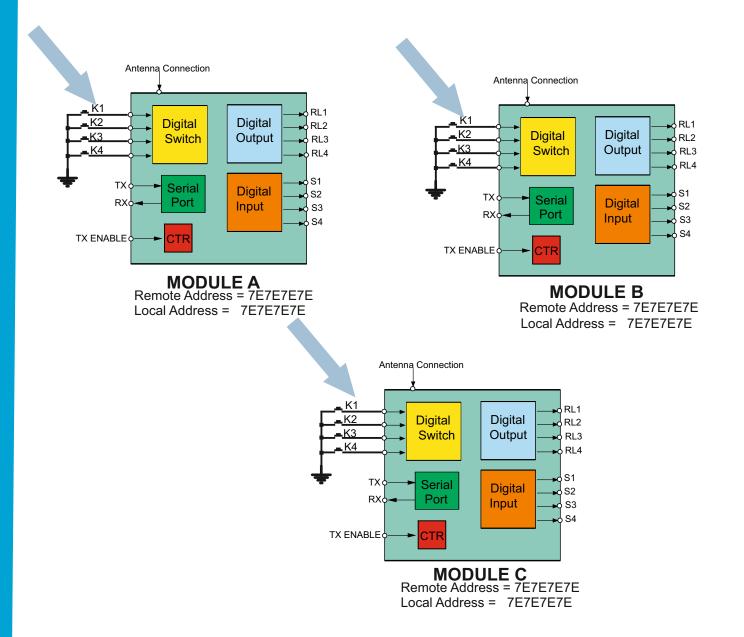
7.1.1 One to one operation


Example of communication between modules A and B:

The 4 output of **module A** (RL1÷RL4) is corresponding to the 4 input of **module B** (K1÷K4), by pressing the keys K1 ÷ K4 of module B the outputs RL1 ÷ RL4 (module A) will be activated or deactivated. RL1÷RL4 outputs, can be work in bistable/ monostable mode.

The 4 output of **module B** (RL1÷RL4) is corresponding to the 4 input of **module A** (K1÷K4), by pressing the keys K1 ÷ K4 of module A the outputs RL1 ÷ RL4 (module B) will be activated or deactivated. RL1÷RL4 outputs, can be work in bistable/ monostable mode.

K1 MODULE A corresponds to RL1 MODULE B



7.1.2 One to many operation

Example of communication between modules A , B, and C, in this case the Remote Address and Local Address are in default condition.

By changing remote and Local address you can get different types of configuration.

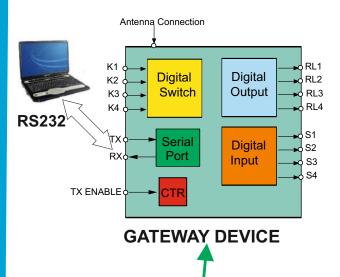
Push K1 MODULE A ---> RL1 of MODULE B and RL1 of MODULE C_--> ACTIVE

Push K1 MODULE B ----> RL1 of MODULE A and RL1 of MODULE C ---> ACTIVE

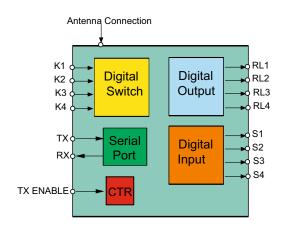
Push K1_MODULE C ----> RL1 of MODULE A and RL1 of MODULE B --> ACTIVE

7.2 Wireless Actuator

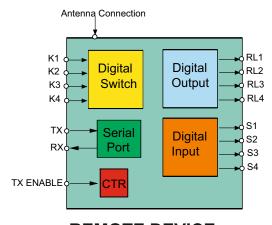
Wireless actuator for home automation, it is possible use 1 unit as Transmitter (controllable via Rs232 serial interface) and by one or more RX units with the possibility to switch 4 channels in bistable or monostable mode (RL1 ÷ RL4) for every RX units.


It is possible to have a "point to point" configuration (No.1 TX unit - No.1 RX unit) or a "point-multipoint" configuration (No. 1 TX unit more RX Unit).

EP Mode.


The transmission of commands on the serial interface is immediately active, the command is immediately sent to the remote unit.

EU Mode


Before sending commands on the serial interface it is necessary to enable the TX ENABLE (K5).

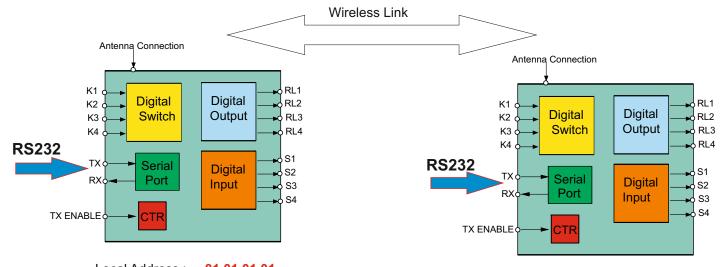
The remote address of this device is changed from time to time via the serial interface according to which remote device you want to reach.

REMOTE DEVICE 1

REMOTE DEVICE n

Rev 3.2

7.3 Radio Modem Functionality


The RC-WuTRx-XXX Radio Modem has applications in many areas where reliable half duplex communications are required over ranges up to 200 meters (with the maximum RF Power it is possible to reach up to 400-500meters).

Since each RC-WuTRx-XXX can contain a unique address, multiple RC-WuTRx-XXX network can co-exist in the same area.

Each Radio Modem (RC-WuTRx-XXX) is pre-configured with a default address «7E 7E 7E 7E», this address can be modified during the configuration.

When the RC-WuTRx-XXX receives the data via RF, the first operation that makes is to check the address header and compares it with its address, only if the two addresses coincide it processes the data and output them on the serial interface otherwise all the data are discarded.

If the addresses are set appropriately, a network can be created.

Local Address : **01 01 01 01** Remote Address : 02 02 02 02

Local Address : **02 02 02 02** Remote Address : 01 01 01 01

EP Mode.

The transmission of commands on the serial interface is immediately active, the command is immediately sent to the remote unit.

EU Mode

Before sending commands on the serial interface it is necessary to enable the TX ENABLE (K5).

8.0 Configuration Mode

8.1 868MHz version. Configuration registers

Register	Byte	Name	Description	Text Value	HEX Value	
	0		MSB	~	7E	Register 01 - Remote Address
01	1	Remote Address		~	7E	1
	2			~	7E	Value Range : 01010101 - FEFEFEFE Default Value : 7E7E7E7E
	3		LSB	~	7E	
	4		MSB	~	7E	
			IVIOD	~	7E	Register 02 - Remote Address
02	5	Local Address		+	+	
	6			~	7 E	Value Range : 01010101 - FEFEFEFE Default Value : 7E7E7E7E
	7		LSB	~	7E	
			865.0 MHz	2	32	
			865.2MHz	4	34	Register 03 - RF CHANNELS
			865.4MHz	6	36	l regions to in our manage
			865.6MHz	8	38	Value Range: 32 - 64
			865.8MHz	:	3A	Default Value : 50
			866.0 MHz	<	3C	T. 5501
			866.2MHz	>	3E	The RF Channel is calculated in the following mode:
			866.4MHz	@	40	FREQ = 860 + (ASCII code / 10) + (Rest division / 10)
			866.6MHz	В	42	for example to character «R» (HEX 52) corresponds
			866.8MHz	D	44	to the frequency 868.2 Mhz because :
			867.0MHz	F	46	«R» Ascii Code = 82> Frequency = 860 + int(82/10)
_			867.3MHz	Н	48	
03	8	RF CHANNELS	867.4MHz	J	4A	Result + rest division (82/10) = 860+8+0.2 = 868.2
			867.6MHz	L	4C	
			867.8MHz	N	4E	
			868.0 MHz	Р	50	
			868.2 MHz	R	52	
			868.4 MHz	Т	54	
			868.6 MHz	V	56	
			868.8 MHz	Х	58	
			869.0 MHz	Z	5A	
			869.2 MHz	\	5C	
			869.4 MHz	^	5E	
			869.6 MHz	<	60	
			869.8 MHz	b	62	
			870,0 MHz	d	64	
			0 dBm	0	30	D. C. C. A. DE TV DOWED
			2 dBm	2	32	Register 04 - RF TX POWER
			4 dBm	4	34	Value Range : 30 - 3E
04	9	RF TX POWER	6 dBm	6	36	Default Value : 3A
			8 dBm	8	38	
			10 dBm	:	3A	The Power value is calculated in the following mode:
			12 dBm	<	3C	Power = Ascii code - 48
			14 dBm	>	3E	For example to the character «7» (HEX 37)
		In RED the defa	ult parameters			correspond the value 7dBm because : «7» Ascii code = 55> Power = 55 - 48 = 7

Nota:

The configuration operations must be carried out when the module is powered by a voltage greater than 2.5Volt and pin 2 (FP) is in 0 (Low) condition, when FP is at level logical 1 (High) the flash memory is write protected. After carrying out the configuration operations, return pin 2 FP to logic level 1 to protect the flash memory.

8.2 433MHz version. Configuration registers

Register	Byte	Name	Description	Text Value	HEX Value	
	0		MSB	~	7E	Posister 04 Pomete Address
01	1	Remote Address		~	7E	Register 01 - Remote Address
	2			~	7E	Value Range: 01010101 - FEFEFEFE
	3		LSB	~	7E	Default Value : 7E7E7E7E
	4		MSB	~	7E	
02	5	Local Address		~	7E	Register 02 - Remote Address
	6			~	7E	Value Range : 01010101 - FEFEFEFE
	7		LSB	~	7E	Default Value : 7E7E7E7E
	,		430.0MHz	2	32	
			430,2MHz	4	34	
			430.4MHz	6	36	Register 03 - RF CHANNELS
			430.6MHz	8	38	9
			430.8MHz		3A	Value Range: 32 - 64
			431.0MHz	<	3C	Default Value : 50
			431.2MHz	>	3E	
			431.4MHz	@	40	
			431.6MHz	В	42	
			431.8MHz	D	44	
			432.0MHz	F	46	The RF Channel is calculated in the following mode:
			432.0MHz	Н	48	
, 02		DE CHANNELC				FREQ = 425 + (ASCII code / 10) + (Rest division / 10)
03	8	RF CHANNELS	432.4MHz	J ,	4A	for example to character «R» (HEX 52) corresponds to the frequency 433.2MHz because:
			432.6MHz	L	4C	to the frequency 400.2MHz because .
			432.8MHz	N	4E	«R» Ascii Code = 82> Frequency = 425+ int(82/10)
			433.0MHz	Р	50	Result + rest division (82/10) = 425+8+0.2 = 433.2
			433.2MHz	R	52	Result + Test division (62/10) - 425+6+0.2 - 455.2
			433.4MHz	Т	54	
			433.6MHz	V	56	
			433.8MHz	Х	58	
			434.0MHz	Z	5A	
			434.2MHz	\	5C	
			434.4MHz	٨	5E	
			434.6MHz	<	60	
			434.8MHz	b	62	
			435.0MHz	d	64	
			0 dBm	0	30	
			2 dBm	2	32	Register 04 - RF TX POWER
			4 dBm	4	34	
. 04	9	RF TX POWER	6 dBm	6	36	Value Range : 30 - 3E Default Value : 3A
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8 dBm	8	38	
						The Power value is calculated in the following mode
			10 dBm	:	3A	Power = Ascii code - 48
			12 dBm	<	3C	For example to the character «7» (HEX 37)
			14 dBm	>	3E	correspond the value 7dBm because :

In RED the default parameters

Nota:

The configuration operations must be carried out when the module is powered by a voltage greater than 2.5Volt and pin 2 (FP) is in 0 (Low) condition, when FP is at level logical 1 (High) the flash memory is write protected. After carrying out the configuration operations, return pin 2 FP to logic level 1 to protect the flash memory.

8.3 915MHz version . Configuration registers

Register	Byte	Name	Description	Text Value	HEX Value		
	0		MSB	~	7E	Register 01 - Remote Address	
01	1	Remote Address		~	7E		
	2			~	7E	Value Range : 01010101 - FEFEFEFE Default Value : 7E7E7E7E	
	3		LSB	~	7E	Boldult Value : /E/E/E/E	
	4		MSB	~	7E		
02	5	Local Address		~	7E	Register 02 - Remote Address	
	6			~	7E	Value Range : 01010101 - FEFEFEFE	
	7		LSB	~	7E	Default Value : 7E7E7E7E	
			912.0MHz	2	32		
			912.2MHz	4	34		
			912.4MHz	6	36		
						Degister 02 DE CHANNELS	
			912.6MHz	8	38	Register 03 - RF CHANNELS	
			912.8MHz	:	3A	Value Decree 200 CA	
			913.0MHz	<	3C	Value Range : 32 - 64 Default Value : 50	
			913.2MHz	>	3E	Delault value : 30	
			913.4MHz	@	40		
			913.6MHz	В	42		
			913.8MHz	D	44		
			914.0MHz	F	46	The RF Channel is calculated in the following mode	
			914.2MHz	н	48	EDEO = 007 L (ASCII anda / 10.) L (Boot division / 10.)	
03	8	RF CHANNELS	914.4MHz	J	4A	FREQ = 907+ (ASCII code / 10) + (Rest division / 10 for example to character «R» (HEX 52) corresponds	
05	O	IN CHANNELS	914.6MHz	Ĺ	4C	to the frequency 915.2MHz because :	
			914.8MHz	N			
					4E	«R» Ascii Code = 82> Frequency = 907+ int(82/10	
			915.0MHz	Р	50	Decrit 1 meet division (00/40) = 0071010 0 = 0450	
			915.2MHz	R	52	Result + rest division (82/10) = 907+8+0.2 = 915.2	
			915.4MHz	Т	54		
			915.6MHz	V	56		
			915.8MHz	Х	58		
			916.0MHz	Z	5A		
			916.2MHz	\	5C		
			916.4MHz	^	5E		
			916.6MHz	<	60		
			916.8MHz	b	62		
			917.0MHz	d	64		
			0 dBm	0	30	Pagistar 04 DE TY DOWED	
			2 dBm	2	32	Register 04 - RF TX POWER	
			4 dBm	4	34	Value Pango : 30 3E	
04	9	RF TX POWER	6 dBm	6	36	Value Range: 30 - 3E Default Value: 3A	
			8 dBm	8	38	Bolduit Value . VA	
			10 dBm	:	3A		
						The Power value is calculated in the following mode	
			12 dBm	<	3C		
			14 dBm	>	3E	Power = Ascii code - 48 For example to the character «7» (HEX 37)	

In RED the default parameters

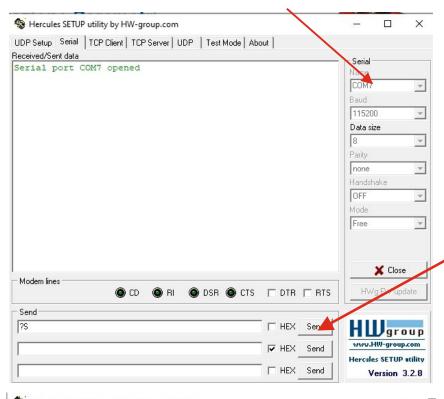
Nota:

The configuration operations must be carried out when the module is powered by a voltage greater than 2.5Volt and pin 2 (FP) is in 0 (Low) condition, when FP is at level logical 1 (High) the flash memory is write protected. After carrying out the configuration operations, return pin 2 FP to logic level 1 to protect the flash memory.

Pag. 14 / 40

correspond the value 7dBm because:

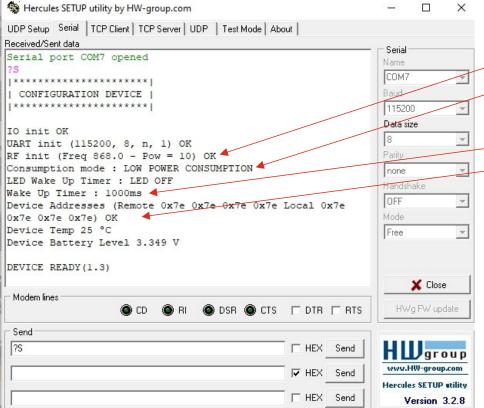
«7» Ascii code = 55 ----> Power = 55 - 48 = 7



O HILLIAN STATE OF THE STATE OF

8.4 Configuration Parameters

Parameter configuration example, using the evaluation board supplied with the evaluation kit and the software called "Hercules SETUP utility". This is a freeware utility that can be downloaded freely.

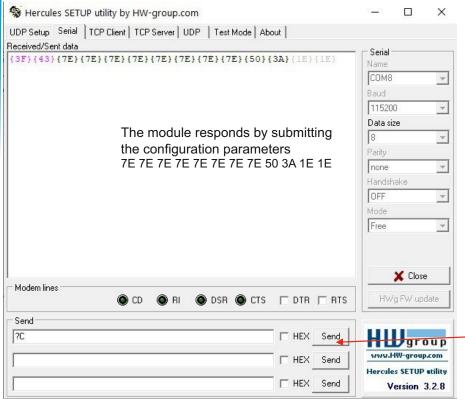

1) Open the serial port as follows:

Software used : Hercules SETUP utility (free use)

Serial Port Configuration

2) Send the command «? S» for view the current configuration

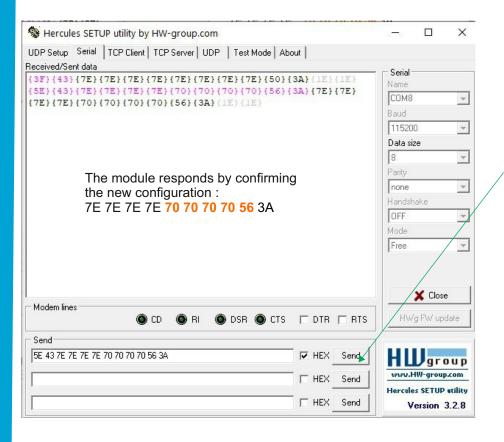
Frequency=868MHz Power=10dBm


Modality = EP Mode / EU Mode

WakeUp Time (Default 1000mS)

Remote and Local Address Default 7e7e7e7e 7e7e7e7e

3) Send the "? C" command to view only the configuration parameters


Set the Hercules software to receive hexadecimal character (press the right mouse button and :

- In the Special Chars menù choise HEX
- Choice HEX Enable

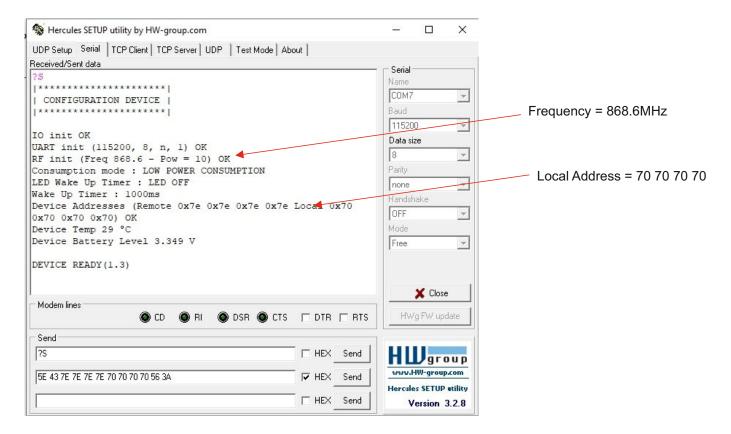
Send the command «C»

4) Invio nuova configurazione

By pressing this button the new configuration is transmitted 7E 7E 7E 7E 70 70 70 70 56 3A (hexadecimal string)

Parameters in red have been changed

70 70 70 70 Local address


56 Frequency = 868.6MHz

5) Send the "? S" command to view the current configuration

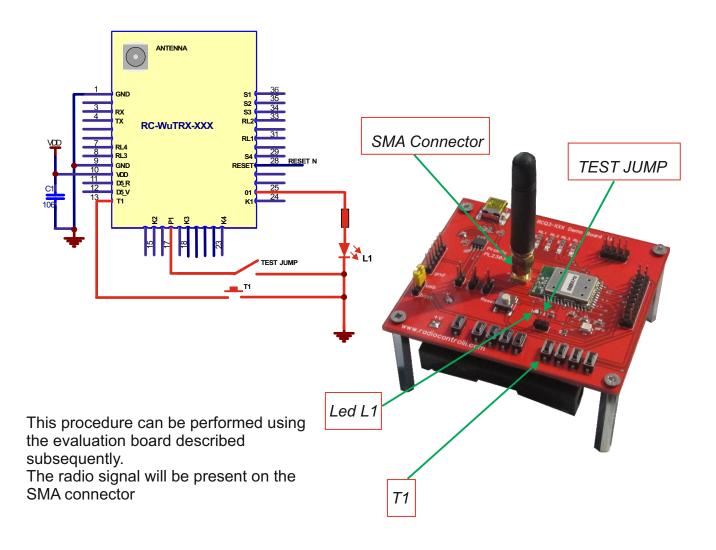
Set the Hercules software to receive hexadecimal character (press the right mouse button and :

- In the Special Chars menù choise Text Mode

Note:

The configuration operations must be carried out when the module is powered by a voltage greater than 2.5Volt and pin 2 (FP) is in condition 0 (Low), when FP is at logic level 1 (High) the flash memory is write protected.

- Set FP to 0 (Low)
- Carry out a hardware reset of the module (pin 28 active low)
- The Module is ready to be configured
- Set FP to 1 (High)
- Reset the module (pin 28 active low)
- The module's flash memory is write protected

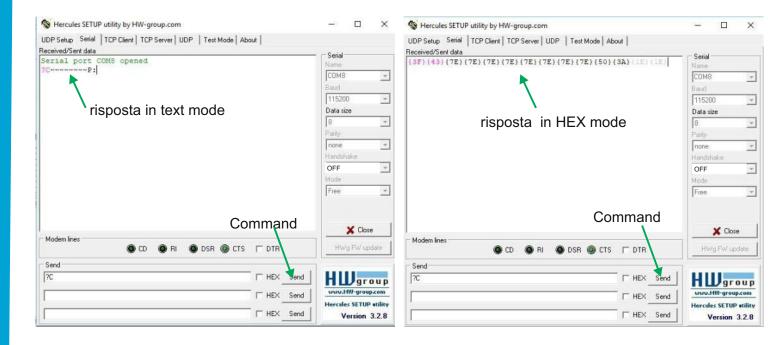


8.5 Configuration Check (Test Procedure)

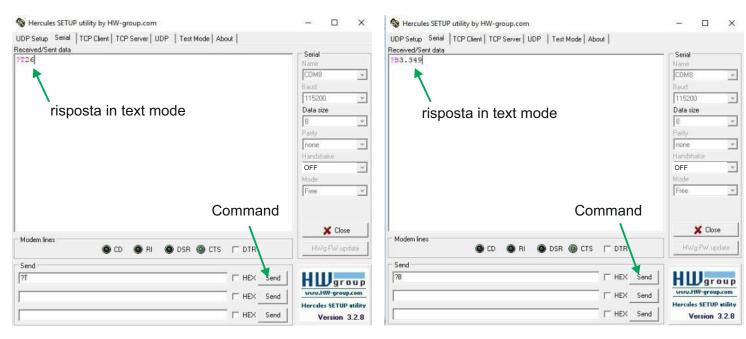
It is possible to entry in Test Mode with the following procedure :

- 1) Close the TEST JUMP
- 2) The L1 will turn ON
- 3) Push T1 button.

With this operation the carrier with frequency and amplitude value previously set (see previous paragraphs) will be available on the antenna connector (UFL).

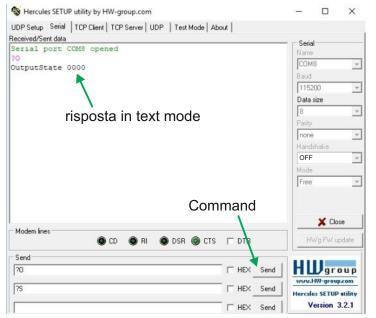

9.0 Local Commands List (device in EP Mode)

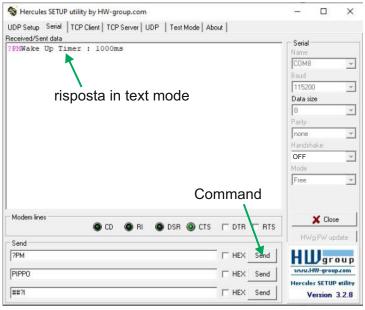
L	ocal Command	Description	Example
1	?C	Returns the configuration parameters : 1) Remote Address, 2) Local Address, 3) Frequency, 4) Power Value	see par. 9.1
2	?T	Returns the temperature value (°C)	see par. 9.2
3	?B	Returns the value of battery (Volt)	see par. 9.2
4	?0	Returns the local output state	see par. 9.3
5	?I	Returns the local input state	see par. 9.3
6	?M	Returns the local monostable state	see par. 9.5
7	?TM	Returns the value monostable timer	see par. 9.7
8	?PM	Returns the value wake up timer	see par. 9.3
9	?V	Return the local Fw version	see par. 9.4
10	?BR	Return the local UART Baud Rate	see par. 9.4
11	?Н	Help	see par. 9.6
12	?\$	Returns the general information	see par. 9.6
13	^C+CONF	Allows to modify the configuration of the module example : ^C~~~~~~T2 (text) or 5E 43 7E 7E 7E 7E 7E 7E 7E 7E 54 32 (Hex)	see par. 8.4
14	^B+BAUDRATE	Value accepted: 115200,57600,38400,19200,9600,4800,2400,1200 Examp: ^B115200. After this command you must reset the device.	le see par. 9.8
15	^M +xM or xB	Change from monostable/bistable mode	see par. 9.5
16	^E + P or U	Change from Low Power Consumption to Ultra Low Power Consumption.	see par. 9.9
17	^R + 1 or 0	Wake Up Timer LED On/Off	see par. 9.11
18	^P + 1 to 4	Change Wake Up Timer	see par. 9.10
19	^T + <hex></hex>	Change Local Monostable Timer. After this command it's necessary reset the device.	see par. 9.7



9.1 «?C» Command

9.2 «?T» e «?B» Command




Returns the value in ° C.

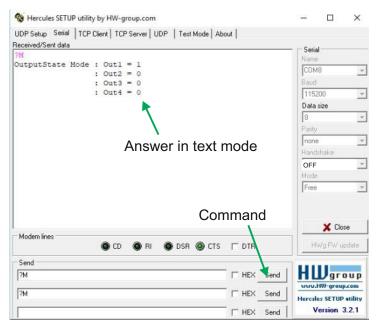
Return the value in Volt.

9.3 «?O» e «?PM» Command

0000 means that the 4 outputs RL1÷RL4, they are low level.

The Wake up time is equal to 1000mseconds

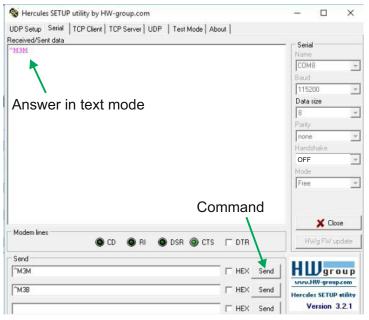
9.4 «?V» e «?BR» Command



Firmware version

Baud rate

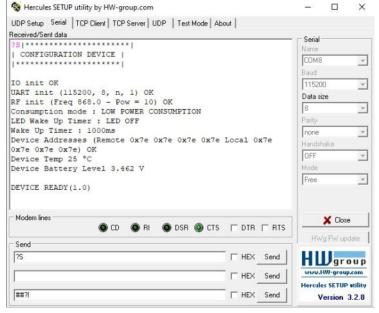
9.5 «?M» e «^M» Command

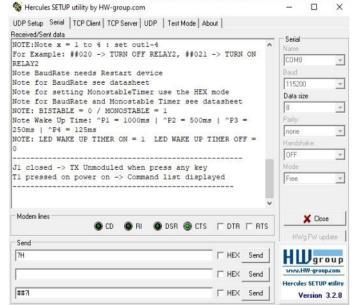

«? M» Provides information on how the channels were previously configured :

OUT1=1= Monostable mode

OUT2=0= Bistable mode

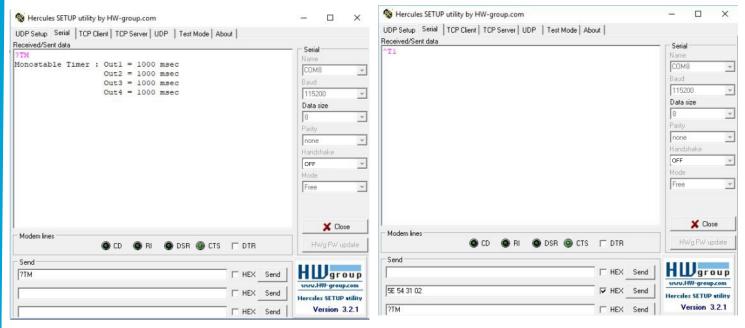
OUT3=0= Bistable mode


OUT4=0= Bistable mode


«^M + xM or xB» channels configuration M (monostable) o B (bistable) . Eexample :

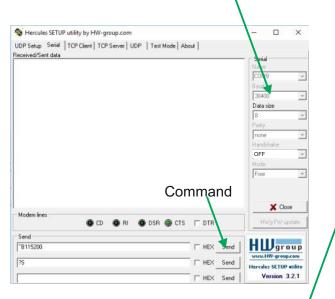
^M1M Channel 1 in Monostable Mode ^M2B Channel 2 in Bistable Mode

9.6 «?S» and «?H» Command

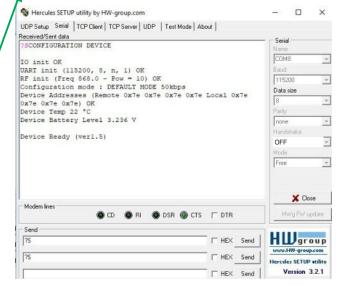

«? S» provides the main information of the configuration

«?H» list of commands available.

9.7 «?TM» e «^T+Hex» Command

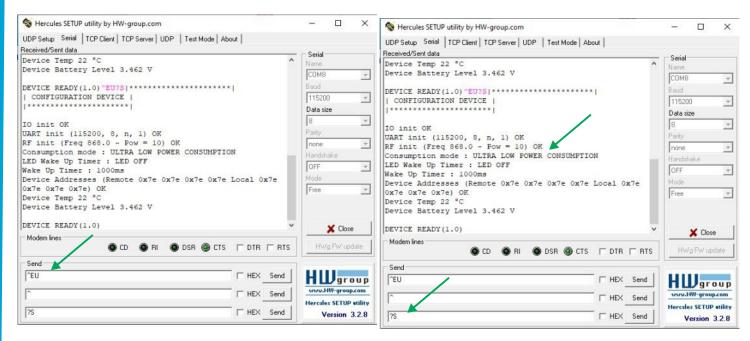

«?TM» provides the Mostabile time for the 4 channels

Command transmission in hex

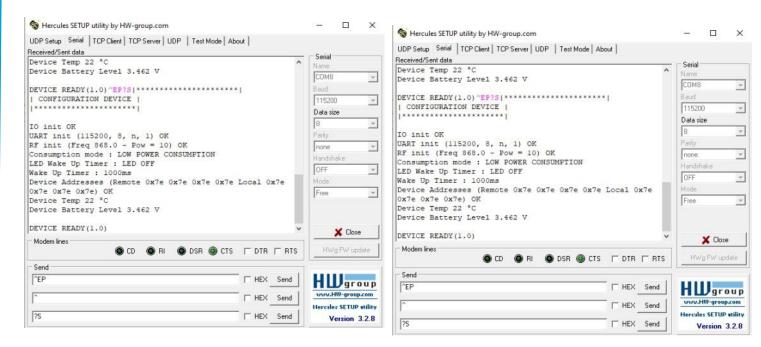


9.8 «^B+Baudrate»

The device is initially configured at 38400 baud rate


Open the serial port at 115200 as baud rate Send the command «? S» and check the new one configuration.

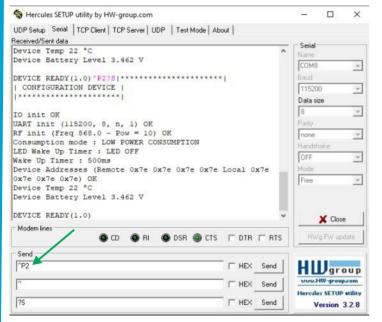
After sending the command ^ B115200 it is necessary to perform a hardware RESET.

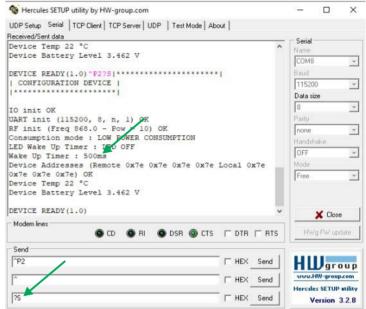

9.9 «^E» Command

The "^ EU" command configures the device in EU (Ultra Low Consumption Mode), after sending this command it is possible to check the new configuration using the "? S" command.

Warning !!

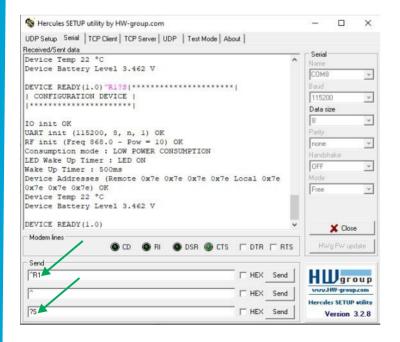
In EU mode (Ultra Low Consuption Mode) to reduce the consumption the serial interface is disabled. To be able to do further configuration one has to provide a TX enable signal on pin 14 so the serial interface becomes active again

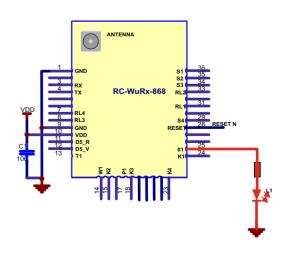

The "^ EP" command sets the device to EP Mode, after sending this command is possible tocheck the new configuration using the "? S" command.



9.10 «^P» Command

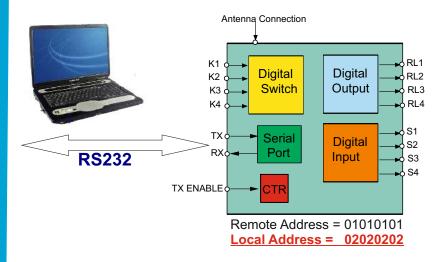
The "^ P" command can accept the following values:

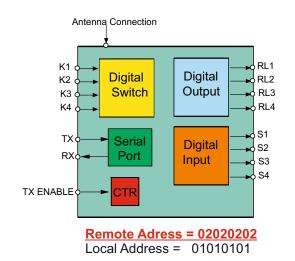

P=1 ---> Wake Up Timer = 1000msec
P=3 ---> Wake Up Timer = 500msec
P=4 ---> Wake Up Timer = 125msec



9.11 «^R» Command

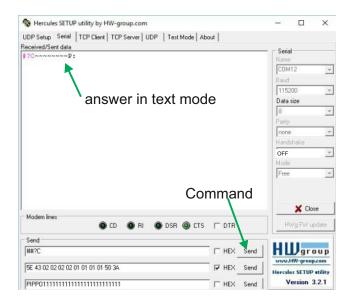
The "^ R" command can accept the following values: R=1 ---> LED ON R=0 ---> LED OFF

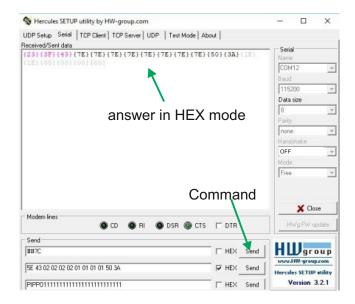


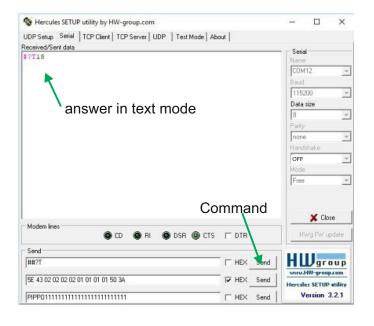


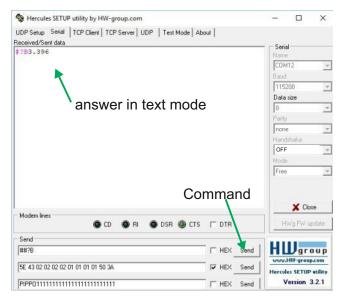
10.0 Remote Commands List

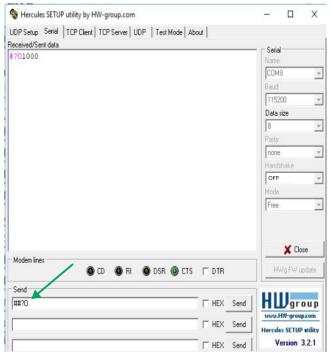
	Remote Command	Description	Example	Note
1	##?C	Returns the configuration parameters : 1) Remote Address, 2) Local Address, 3) Frequency, 4) Power Value	See par. 10.1	
2	##?T	Returns the temperature value (°C)	See par. 10.2	
3	##?B	Returns the value of battery (Volt)	See par. 10.2	
4	##?O	Returns the value of the Remote Output State	See par. 10.3	
5	##?I	Returns the value of the Remote Input State	See par. 10.3	
6	##?M	Returns the value of the monostable state	See par. 10.7	
7	##?V	Returns the FW version	See par. 10.6	
8	##?RS	Returns the RSSI value	See par. 10.6	
9	##?BR	Returns the value of UART BaudRate	See par. 10.5	
10	##0x0	Remote Relay OFF	See par. 10.8	(*)
11	##0x1	Remote Relay ON	See par. 10.8	(*)

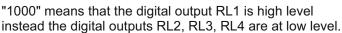

(*) Commands also executable in EU mode (very low consumption)

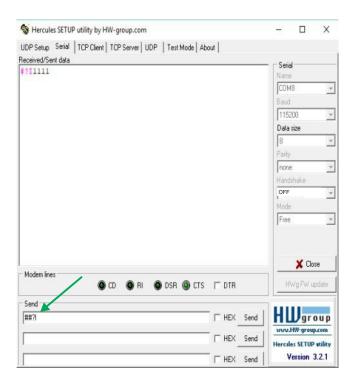




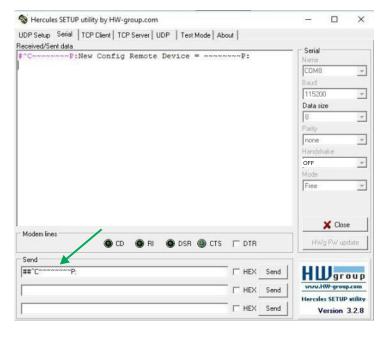

10.1 «##?C» Command

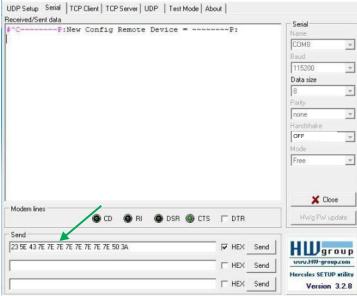

10.2 «##?T» e «?B» Command





10.3 «##?O» e «##?I» Command

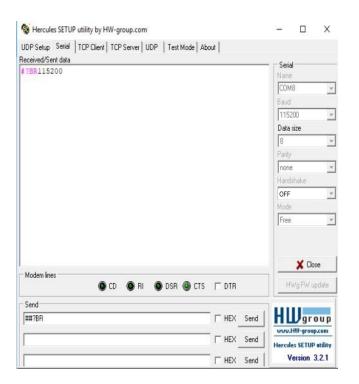


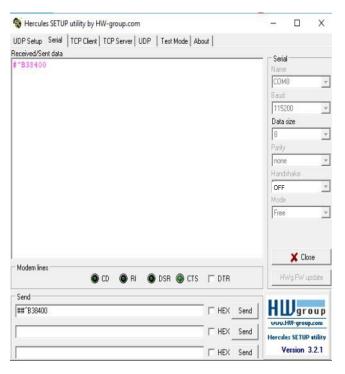


It means that all digital inputs are high level

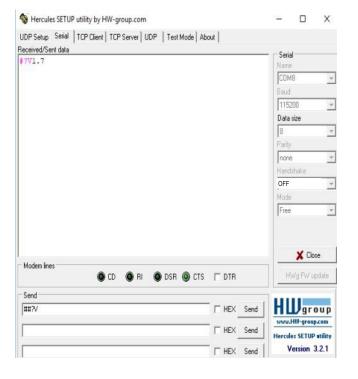
Hercules SETUP utility by HW-group.com

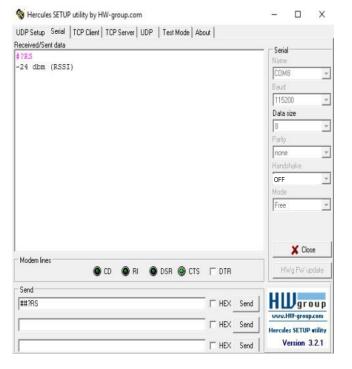
10.4 «##^C»+ Configuration Command



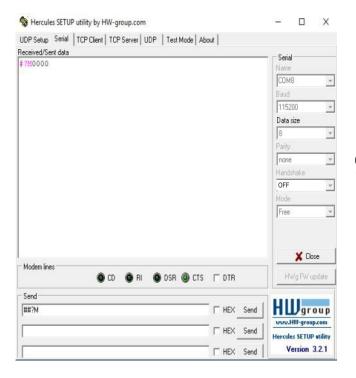

TEXT Mode HEX Mode

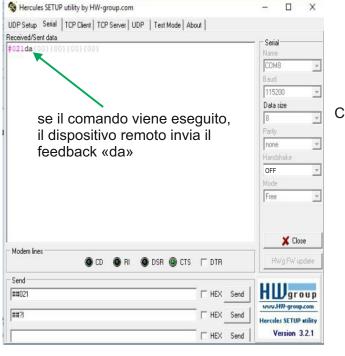
Pag. 28 / 40 www.radiocontrolli.com

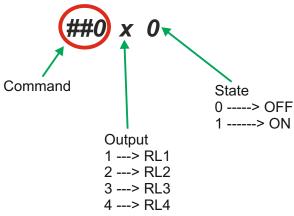

10.5 «##?BR» Remote baud rate «##^B» Change baud rate Command



The remote device is changed at 38400 baud rate after this instruction is necessary an HW reset.


10.6 «##?V» Fw version «##^RS» Remote RSSI Command

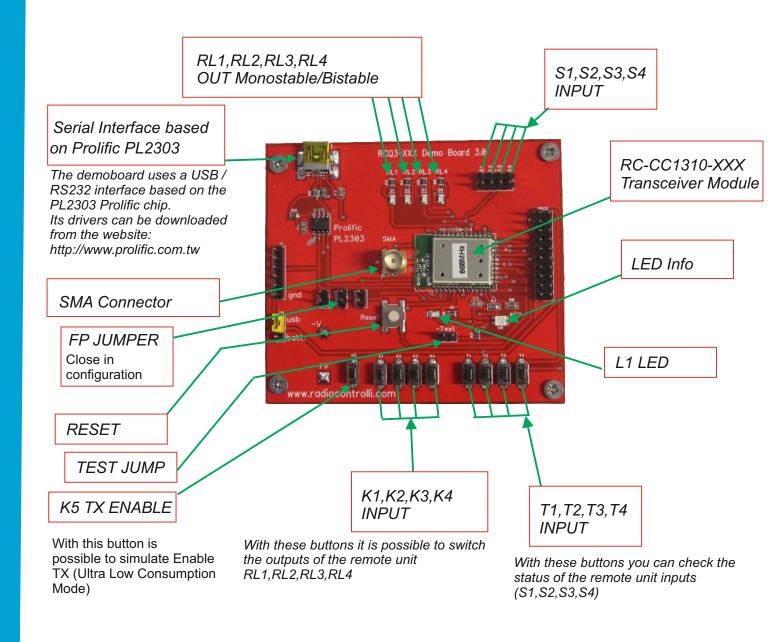

10.7«##?M» Monostable state Command



In this case all 4 digital outputs are set in bistable mode.

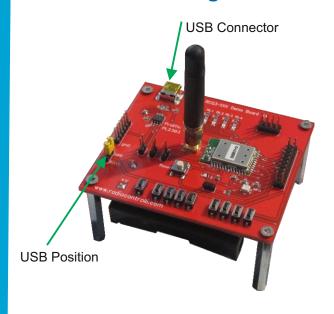
0= Bistable 1= Monostable

10.8«##0x0» and «##0x1» Remote Relay ON/OFF

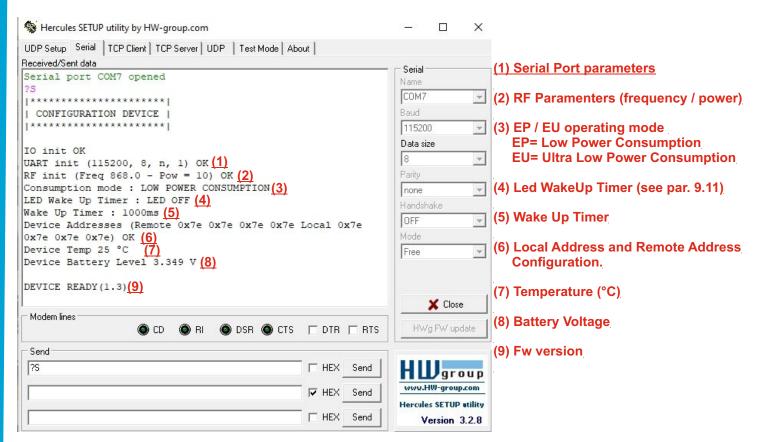


11.0 Evaluation Kit - Quick Guide

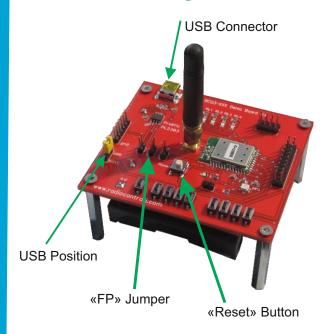
The Evaluation Kit is composed By:


- N.2 Evaluation Board with SMA Antenna
- N.2 USB cables

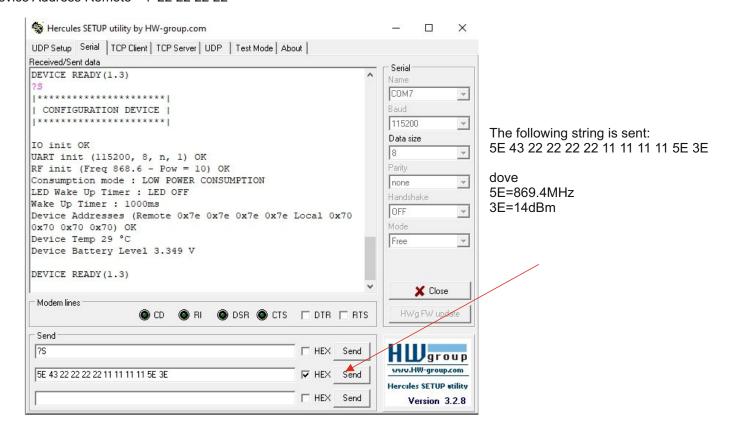
11.1 Evaluation Board Description

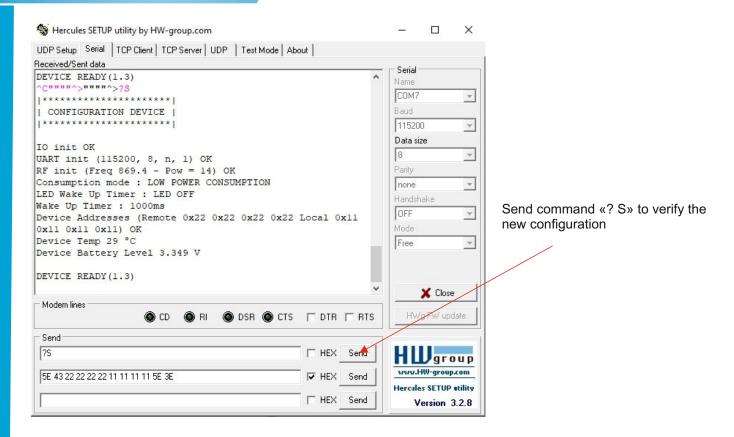


11.2 Check Configuration Parameters

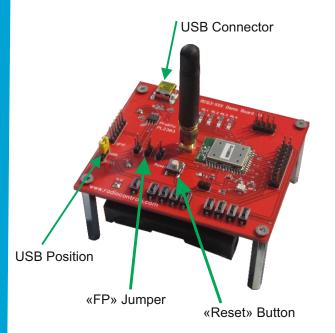


- Make sure the jumper is in the USB position (USB powered)
- Connect the Personal computer to the USB connector check the correct recognition of the drivers
 Prolific, in case of problems these drivers can be downloaded from the website: http://www.prolific.com.tw.
- After locating the serial port, open the Hercules software as indicated below.
- (*) It is possible to use any "serial port terminal »for convenience we use the Hercules software, freeware downloadable from the website www.hw-group.com.
- Open the serial port as shown in the figure
- Use the "? S" command to check the default configuration


11.3 Edit Configuration Parameters

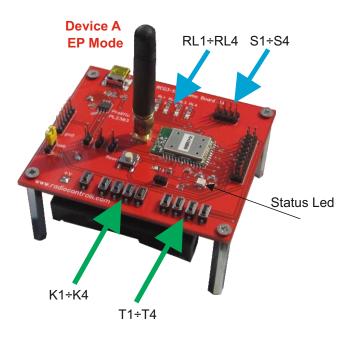

- From the hardware point of view to be able to modify the parameters you need to make sure that the FP jumper (FP signal = 0) indicated in the photo opposite.
- After inserting the FP jumper perform a Hardware reset, using the RESET button.
- From this moment it is possible to modify the parameters of configuration.

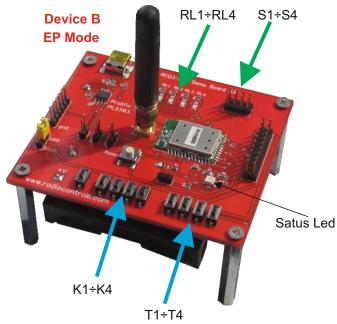
Example Changing configuration parameters, you want to obtain the following new configuration:


Frequency : 869.4MHz
Power : 14dBm
Device Address Local : 11 11 11
Device Address Remote : 22 22 22

From the screen above you can see the configuration changes made. We suggest (after the configuration) to remove the FP jumper (flash write protected).

- Remove the FP jumper (FP signal = 1).
- Perform a hardware reset, using the RESET button.
- From this moment it will not be possible to modify the configuration parameters.


12 «Wireless Switch» Functionality - EP Mode


(EP Mode)
Consumption 1.2mA
Bidirectional

Both units are configured in EP Mode.

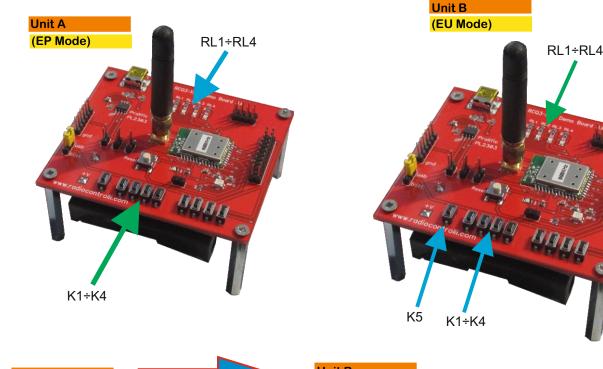
The digital outputs RL1 ÷ RL4 can be configured in monostable or bistable mode, by default they are configured in monostable.

Each time a command is executed, the TX unit receives the feedback of the command executed. The «Status Led» indicated in the figure will light up (return receipt of the command sent).

Press keys K1 ÷ K4 (Device A) and check on the remote unit (Device B) the change of state of the digital outputs RL1, RL2, RL3, RL4 Press keys K1 ÷ K4 (Device B) and check on the remote unit (Device A) the change of state of the digital outputs RL1, RL2, RL3, RL4

Press keys T1 ÷ T4 (Device A) and check the status of the LED; If the status LED is colored green it means that the digital input S1 ÷ S4 (Device B) is at logic level 1. If the status LED is red it means that the digital input S1 ÷ S4 (Device B) is at logic level 0.

Press keys T1 ÷ T4 (Device B) and check the status of the LED; If the status LED is colored green it means that the digital input S1 ÷ S4 (Device A) is at logic level 1. If the status LED is red it means that the digital input S1 ÷ S4 (Device A) is at logic level 0.


2

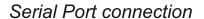
13 «Wireless Switch» Functionality - EU Mode

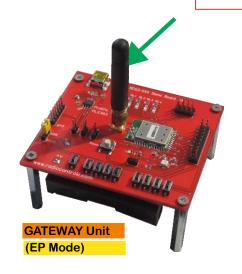
In this example of use, unit A is configured in EP Mode (consumption 1.2mA) instead unit B is configured in EU Mode (consumption 120µA).

Unit B will always be listening (WakeUp Timer 1sec) for the commands sent by unit A. In order to transmit commands from unit B to unit A it will be necessary to enable the TX ENABLE (in the evaluation board it corresponds to the K5 key).

Command transmission from A ----> B
Press the K1 ÷ K4 keys of unit A and
check on unit B the status change of the
digital outputs RL1 ÷ RL4.

Antenna Connection K5 RI 1 Digital Digital K2 RL2 Switch Output RI 3 K3 RL4 Serial Digital S2 Input S3 S4 TX ENABLE


Tcommand transmission from B ----> A
Enable transmission of commands
by pressing the K5 key.
Press the K1 ÷ K4 keys of unit A and
check on unit B the status change of the
digital outputs RL1 ÷ RL4.



14 «Wireless Actuator» Functionality

The GATEWAY unit must be configured in EP Mode instead the other units can be configured in EU mode (consumption around 120 μ A); It is possible to control the outputs RL1 ÷ RL4 of the units Unit 1, Unit 2, Unit «n».

Below there is a table of commands that can be executed on the remote units in EP Mode and EU Mode.

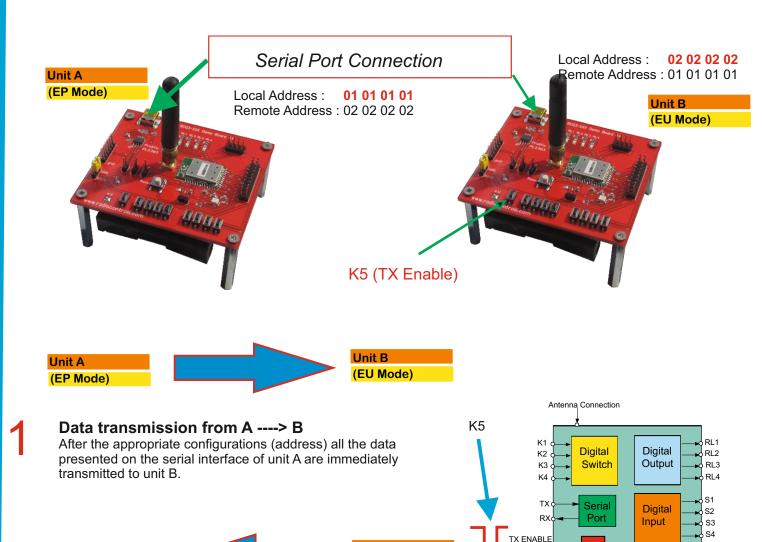
Unit 2 (EU Mode)

The remote address of the GATEWAY is changed from time to time through the serial interface according to which remote device you want to reach.

Unit 1 (EU Mode)

	Remote Command	Description	EP Mode	Eu Mode
1	##?C	Returns the configuration parameters	Enabled	Disable
2	##?T	Returns the temperature value (°C)	Enabled	Disable
(1)	##?B	Returns the value of battery (Volt)	Enabled	Disable
4	##?O	Returns the value of the Remote Output State	Enabled	Disable
5	##?I	Returns the value of the Remote Input State	Enabled	Disable
e	##?M	Returns the value of the monostable state	Enabled	Disable
7	##?V	Returns the FW version	Enabled	Disable
8	##?RS	Returns the RSSI value	Enabled	Disable
ç	##?BR	Returns the value of UART BaudRate	Enabled	Disable
1	0 ##0x0	Remote Relay OFF	Enabled	Enabled
1	1 ##0x1	Remote Relay ON	Enabled	Enabled
1	2			
1	3			

15 «Radio Modem» Functionality


With this function, a Rs232 wireless link is created, preamble and CRC are automatically generated and added to the RF transmission.

The Device configured in EP Mode immediately transmits the data presented on the serial interface.

If both devices are configured in EP Mode, the system is bidirectional, all characters appearing on the serial interface of Unit A are transmitted to unit B and vice versa.

Example of such one-to-one two-way communication can be found on the next page.

The Radio Modem function can also be used in low consumption mode (EU Mode)
In the example below, unit A is configured in EP Mode and unit B is configured in EU Mode (low consumption).

Unit B

(EU Mode)

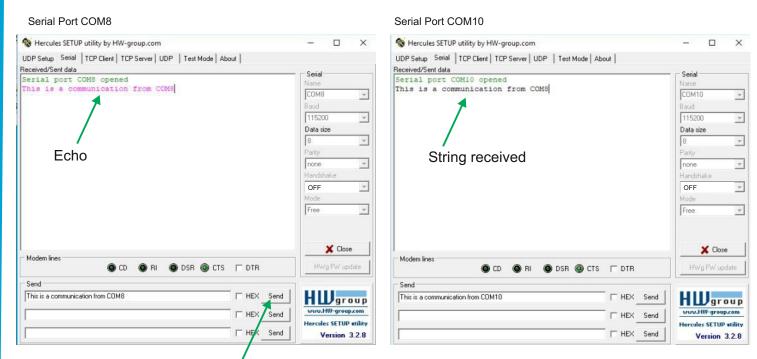
Command transmission from B ----> A

Unit A

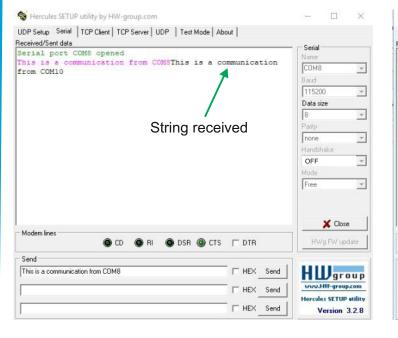
(EP Mode)

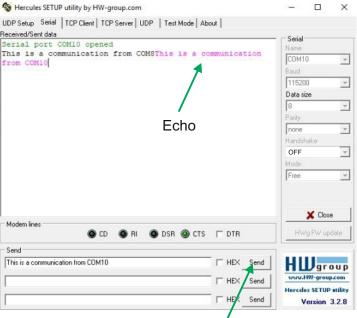
or in part these information without notice.

Unit B configured in EU Mode is not immediately enabled for data transmission. For which it is necessary:


- 1) Enable TX ENABLE (K5 on evaluation board).
- After enabling the data presented on the serial interface are transmitted to unit A.

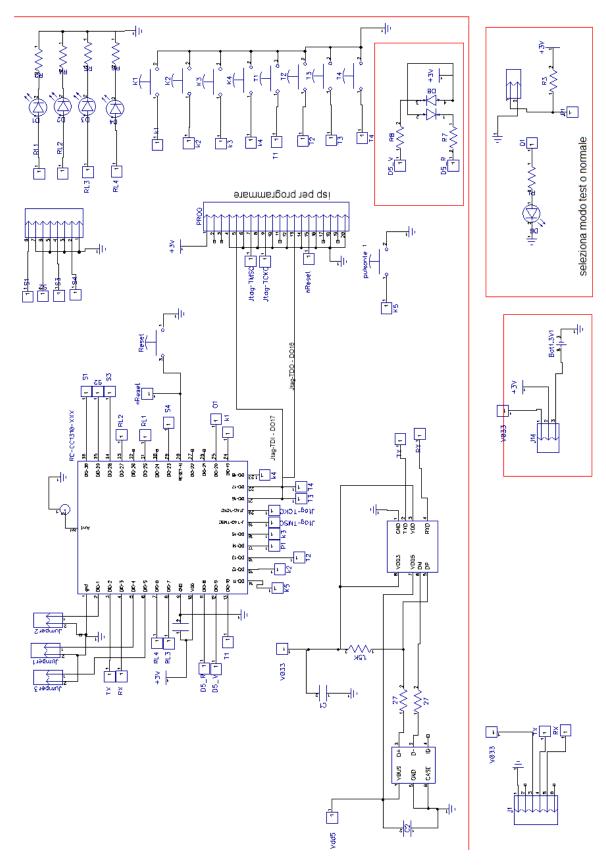
Radiocontrolli s.r.l refuses any responsibility for irregular uses of the devices and for any possible lack or inaccuracy of the data and reserves the right to change in whole




15.1 Example of Radio Modem communication (One to One)

This example was performed using the Hercules SETUP software (free use). The maximum length of the single packet that can be transmitted is 25 bytes.

By pressing this button, the following string was sent This is a communication from COM8"



By pressing this button, send the following string:

"This is a communication from COM10"

16 Electrical schematics

